
Chapter 2 : String comparison

Basic notions
Let Σ be finite ordered alphabet. We suppose ∣∣ is constant. ∗ is the set of all strings over Σ. We
will use symbols S , S1, S 2,... for strings. ∣S∣ denotes length of string S. We also use symbol n to
refer to length of string, if not specified otherwise. We write S [i], where 0i∣S∣, to refer to i-th
character of S. We define S [−1]=¢ and S [∣S∣]=$, where ¢ ,$∉ are special symbols. S [i..j],
where 0i j∣S∣ refers to substring of S, starting at position i and ending at position j.
Each position 0i∣S∣ represents unique suffix S [i..n−1] of S. We define left context
LC S i =S [i−1] for each suffix i. Note that suffix 0 has special left context ¢. When it is clear, which
string we are refering to, we write just LC i .

Matches and repeats
Definition: Let S be string of length n. A triple  p1, p2, l ∈N n

3 is called repeat iff

1. p1l−1n∧ p2l−1n
2. S [p1 .. p1l−1]=S [p2 .. p2l−1]

A repeat  p1, p2, l  is called left maximal if LC  p1≠LC  p2∨LC  p1=¢.
A repeat  p1, p2, l  is called right maximal if S [p1l]≠S [p2l]∨S [p1l]=$.
A repeat is called maximal if it is left and right maximal.

Definition: Let S1, S2 be strings, m=min ∣S 1∣,∣S2∣1. A triple  p1, p2, l ∈N∣S 1∣
×N ∣S 2∣

×N m is called
match (of S1 and S2) iff

1. p1l−1∣S1∣∧ p2l−1∣S 2∣
2. S1[p1 .. p1l−1]=S 2[p2 .. p2l−1]

A match  p1, p2, l  is called left maximal if LC S1
 p1≠LC S 2

 p2∨LCS 1
 p1=¢.

A match  p1, p2, l  is called right maximal if S1[p1l]≠S 2[p2l]∨S1[p1l]=$.
A match is called maximal if it is left and right maximal.

Chapter 3 : Enhanced suffix array and it's implementation

In Chapter 4, we'll describe algorithms for computing maximal matches and maximal repeats. These
algorithms work with rather non-trivial data structure: enhanced suffix array. This data structure
was originally introduced in [1]. This chapter contains only brief introduction and also deals with
implementation issues.

Enhanced suffix array consists of regular suffix array enhanced with additional information: lcp-
table. Rows of lcp-table that meet certain conditions can be grouped to intervals called lcp-intervals.
These then constitute a virtual data structure lcp-interval tree. This structure is sufficient to replace
suffix tree (text indexing data structure used for similar purposes) in almost every application, being
more memory efficient, as shown in [2].

[TODO: better introduction, mention suffix tree and reference paper about it]

Definition: Let S be string, ∣S∣=n. An array sa of n integers in range 0 to n-1 is called a suffix
array of string S iff sa [0] , sa [1] ,... , sa [n−1] is sequence of positions of suffixes of S in ascending
lexicographic order, i.e ∀ i , j :0i jn⇒S [sa [i] .. n−1]L S [sa [j] .. n−1], where L is
lexicographic order on ∗.

Currently, there are three different ways how to compute suffix array directly (without first
computing suffix tree) in linear time. For details see [4], [5] and [6]. In implementation of
DiffEngine library, we use algorithm described in [5]. When DiffEngine computes the suffix array
over n bytes of data, peak memory usage in our implementation is 9.28n bytes. We suppose1 that
n231. Resulting suffix array can be therefore stored in 4n bytes, where most significant bit in each
value can be used for special purposes during further computation.

Definition: Let S be string, ∣S∣=n, sa is suffix array of S. The lcp-table lcptab of string S is an
array of integers in range 0 to n-1. We define lcptab[0] = 0 and lcptab[i] is length of longest
common prefix of suffixes S [sa [i−1] .. n−1] and S [sa [i] .. n−1] for 0in.

Lcp-table can be computed in linear time when suffix array
is available (see [7]), or can be computed as by-product of
linear time suffix array construction as shown in [4]. In
DiffEngine library, we compute lcp-table separately from
suffix array, using space saving implementation trick
described in [3]. That way, we can compute it, with 4n peak
extra memory usage (apart from memory used to store text
(n) and suffix array (4n)). Amount of memory for storage
varies and depends on input data. DiffEngine library uses
variable coding scheme ranging from n to 4n. This will be
described in section XXX.

Table 1 shows example of enhanced suffix array. Note that
we also added a row with left context of each suffix.

1 This limit is practically much lower. Current version of DiffEngine works only on 32bit systems with 4GB RAM
limit. Therefore with peak memory usage 9.28n, internal memory algorithm can compute suffix array on cca 440MB
of data. The number is even little lower as the factor doesn't consider a few megabytes of data structures whose size
don't depend on n.

i suftab lcptab LC S[suftab[i]..n-1]

0 2 0 c aaacatat

1 3 2 a aacatat

2 0 1 ¢ acaaacatat

3 4 3 a acatat

4 6 1 c atat

5 8 2 t at

6 1 0 a caaacatat

7 5 2 a catat

8 7 0 a tat

9 9 1 a t

Table 1: Enhanced suffix array of the
string S=acaaacatat

Definition: A triple l , i , j ∈N n
3 is an

lcp-interval iff

1. i j
2. lcptab [i]l
3. ∀ k , i1k j : lcptab[k]l
4. ∃k , i1k j : lcptab[k]=l
5. lcptab [j1]l

Definition: A lcp-interval  p , q , r  is said to be embedded in lcp-interval l , i , j  if
iqr j∧ pl. Lcp-interval l , i , j  is then called the interval enclosing  p , q , r . If l , i , j 
encloses  p , q , r  and there is no interval embedded in l , i , j  that also encloses  p , q , r , then is
 p , q , r called a child interval of l , i , j .

This parent-child relationship constitutes a conceptual (or virtual) tree which we call lcp-interval
tree. Root of this tree is interval (0,0,n-1). See Illustration 1.

This tree is never really constructed i.e. no parent-child pointers are stored in memory. All lcp-
intervals and their relationships can be computed during one sequential scan of lcp-table which
would simulate bottom-up traversal of the tree.

lcp-interval l , i , j  also defines an interval of suffix array sa. We say that a position p belongs to
(or is from) interval l , i , j  if p=sa [k] where ik j.

Lcp-intervals represent very useful information from repeat point of view.
Consider following three facts about lcp-intervals:

Let p1, p2 be the positions from a lcp-interval l , i , j , p1=sa [k 1] , p2=sa [k2] , k 1k2

Fact 1: l , p1, p2 is repeat.

Proof: From property 3 of lcp-interval it follows that ∀ k , k 1kk 2 : lcptab[k] l, i.e.
∀ k , k 1kk 2 : S[sa[k-1]..sa[k-1]+l-1] = S[sa[k]..sa[k]+l-1]
⇒ S [sa [k 1].. sa [k 1]l−1]=S [sa [k 2].. sa [k 2]l−1]

Fact 2: l , p1, p2 is left maximal iff LC  p1≠LC  p2∨LC  p1=¢

Fact 3: l , p1, p2 is right maximal iff there is no other lcp-interval  p , q , r  embedded in
l , i , j  so that p1, p2 both belong to  p , q , r .

Proof: ⇒:
Let l , p1, p2 be right maximal and let p1, p2 belong to  p , q , r  embedded in
l , i , j . From fact 1,  p , p1, p2 is also repeat, with p>l, which contradicts right
maximality of l , p1, p2
⇐:
Let l , p1, p2 be not right maximal, i.e. S [p1l]=S [p2l]∧S [p1l]≠$
⇒ S [sa [k 1] .. sa [k 1]l]=S [sa [k 2] .. sa [k 2]l]. We see that suffixes at p1, p2 have
common prefix of length at least l+1. Since sa is sorted lexicographically, also
suffixes at sa[k] for ∀ k , k1kk2, have the same prefix and therefore

Illustration 1: Lcp-interval tree for suffix array in
Table 1

∀ k , k1kk2 : lcptab[k]l1. Let p=min {lcptab [k]∣k 1kk 2} From property 2
of lcp-interval:∃q , iqk 1: lcptab[q] p and from property 5
∃r , k 2r j : lcptab[r] p. If we take maximal such q and minimal such r, we have
an lcp-interval  p , q , r  embedded in l , i , j .

Implementation issues

In worst case lcp-table takes 4n bytes. In most cases lcp values rarely
exceed 28 or 216 and therefore can be represented by 1- or 2- byte integer
(char or short). When most of the values of LCP table are small, we
can save space by using more economical coding and register exceptions
for greater values.

Let m be minimal match/repeat length. Since we process only items i from
SA and LCP tables where LCP [i]m, we don't need to represent values
smaller than m. Furthermore, we need one value to indicate end of root
interval and one to indicate exception (value greater than m+254). LCP
values will be coded to 1-byte representation according to Table 1. The 2-
byte representation is coded similarly.

To determine which representation of LCP table to use, we determine following numbers:

k1 - number of values greater than or equal
m+254
k 2 - number of values greater than or equal
m+65634
k ' 1 - number of values greater than m+254
k ' 2 - number of values greater than m+65634

Then, we use rules in Table 2 to decide
coding. We start from line 1. If condition in
line i holds we use given coding, else we
assume conditions 1..i are false and move to
line i+1.

0 End of interval
1 m
2 m+1
...
254 m+253
255 Exception

Table 2: 1-byte LCP code

i condition lcp value
coding

exception
coding

table
size

1 k ' 1=0 1-byte - n
2 k ' 2=0∧n2k12n 1-byte 2-byte n2k1

3 k ' 2=0 2-byte - 2n
4 n4k12n4k2 1-byte 4-byte n4k1

5 2n4k24n 2-byte 4-byte 2n4k2

6 true 4-byte - 4n
Table 3: coding of lcp value

Bibliography
1: M.I. Abouelhoda, S. Kurtz and E. Ohlebusch, The Enhanced Suffix Array and its Applications to
Genome Analysis, In Proceedings of the Second Workshop on Algorithms in Bioinformatics, pages
449-463. Lecture Notes in Computer Science 2452, Springer-Verlag, 2002
2: M.I. Abouelhoda, S. Kurtz and E. Ohlebusch, Replacing Suffix Trees with Enhanced Suffix
Arrays, Journal of Discrete Algorithms, 2:53-86, 2004
3: Giovanni Manzini, Two space saving tricks for linear time LCP computation, Technical Report
TR-INF-2004-02-03-UNIPMN, 2004
4: Juha Kärkkäinen and Peter Sanders, Simple linear work suffix array construction, in Proc. 30th
International Colloquium on Automata, Languages and Programming (ICALP '03). LNCS 2719,
Springer, 2003, pp. 943-955, 2003
5: P. Ko and S. Aluru, Space-efficient linear time construction of suffix arrays, Combinatorial
Pattern Matching, pp. 200-210, 2003
6: D. K. Kim, J. S. Sim, H. Park, K. Park, Linear-time construction of suffix arrays, Proceedings of
the 14th Annual Symposium on Combinatorial Pattern Matching, pp. 186-199, 2003
7: T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, Linear-time longest-common-prefix
computation in suffix arrays and its applications, In Proc. 12th Symposium on Combinatorial
Pattern Matching (CPM ’01), pages 181–192. Springer-Verlag LNCS n. 2089, 2001

	Chapter 2 :	String comparison
	Basic notions
	Matches and repeats

	Chapter 3 : 	Enhanced suffix array and it's implementation
	Implementation issues

