
Implementation tricks
Finding all maximal repeats

Reducing size of suftab, lcptab and bwttab.

To run a lcp-interval tree algorithm for finding repeats we need to
have suftab, lcptab and bwttab available. Together in basic form they
occupy 9n bytes, what makes them most memory demanding data
structures. Before we go into traversal of lcp-interval tree, which
may require additional memory, we can eliminate unnecessary items
of the tables.

One important input parameter of algorithm for finding all max.
repeats is m - minimal length of repeat. When we are interrested
only in maximal repeats with length at least m, we may skip
processing of l-intervals with lm.

By one simple pass, we reduce suftab, lcptab and bwttab according
to lcptab only to those intervals, where lcp is greater than m. For
sufficiently high values of m, size of suftab,lcptab and bwttab may
fall considerably. The process is illustrated on fig. 1.

We have to reduce all tables at the same time, so that we can
eliminate correct lines also from suftab and bwttab following the
information in lcptab.

This new tables represent sequence of subtrees of original lcp-
interval tree, rooted at intervals with minimal acceptable lcp value.

Note the lcptab[0] value in reduced table. All rows with lcp value lower than m were eliminated or
lcp value was rewriten to 0. In latter case this value marks boundary of root interval.

Representation of LCP

Since we assume that input is smaller than 2GB (i.e.n231) we can represent values in LCP table by
4-byte integer (int). So in worst case LCP table takes 4n bytes.

In most cases LCP values rarely exceed 28 or 216 and therefore can be
represented by 1- or 2- byte integer (char or short). When most of
the values of LCP table are small, we can save space by using more
economical coding and register exceptions for greater values.

Let m be minimal match/repeat length. Since we process only items i
from SA and LCP tables where LCP [i]m, we don't need to represent
values smaller than m. Furthermore, we need one value to indicate end
of root interval and one to indicate exception (value greater than
m+254). LCP values will be coded to 1-byte representation according to
Table 1. The 2-byte representation is coded similarly.

0 End of interval
1 m
2 m+1
...
254 m+253
255 Exception

Table 1: 1-byte LCP code

Illustration 1: Reduction of
suftab, lcptab and bwttab

To determine which representation of LCP table to use, we determine following numbers:

k1 - number of values greater than or equal
m+254
k 2 - number of values greater than or equal
m+65634
k ' 1 - number of values greater than m+254
k ' 2 - number of values greater than m+65634

Then, we use rules in Table 2 to decide
coding. We start from line 1. If condition in
line i holds we use given coding, else we
assume conditions 1..i are false and move to
line i+1.

i condition lcp value
coding

exception
coding

table
size

1 k ' 1=0 1-byte - n
2 k ' 2=0∧n2k12n 1-byte 2-byte n2k1

3 k ' 2=0 2-byte - 2n
4 n4k12n4k2 1-byte 4-byte n4k1

5 2n4k24n 2-byte 4-byte 2n4k2

6 true 4-byte - 4n
Table 2: coding of lcp value

