
R3 tree
Property XXX of suffix trees would be sufficient for us to be able to report all right maximal repeats. To 
ensure left maximality of  p1 , p2 , l, it has to hold that LC [ p1]≠LC [ p2]. In following section we'll 
define another refinement of the structure of the suffix tree, so that we can address this requirement. This 
will be done by partitioning the Pos v sets of nodes of T according to left contexts of its suffixes. The 
result will be a conceptual structure LC-bucket tree that will be used to illustrate problems we need to 
cope with, when we want to implement findPairs query.

1.1.1 Definition (LC-buckets)
Let ¢=∪{¢}. For an internal node v of a suffix tree T for string S of length n and a symbol a, we 
define LC-bucket to be a set of positions  returned by function b:V I T ×¢2Nn which is defined as 
follows:

b v , a ={u∈Pos v∣LC u =a }

We also define analogues for sets Pos v, Pos2 v

b  v ,a ={u∈Pos v∣LC u=a }
b2 v , a ={u∈Pos2 v∣LC u=a }
b∗ v ,a ={u∈Pos∗ v∣LC u =a }

and set of all LC-buckets for a suffix tree T

B T = {b  v , a ∣v∈V I T  , a∈¢ , b v ,a ≠∅}

For a LC-bucket, we define it's left context as the left context of any of it's elements:

∀ b∈B T : LC b =LC i , i∈b

As LC-buckets group suffixes with the same left context, this function is well-defined.
We define sets B  T  , B2 T  , B∗T  and LC for their elements analogically.

1.1.2 Definition (LC-bucket tree)
LC-bucket tree is created from suffix tree by removing leaves and appending LC-buckets to respective 
internal nodes.

Formally LC-bucket tree for string S is a tree T =V , E , root , such that

1. V =V I ST S ∪BST S 
2. E=E I ST S E B

3. root=root ST S 

Where  E B={v ,b v ,a ∣v∈V I ST S  , a∈¢ , b v , a ≠∅}

We will use term LCBT S  to denote LC-bucket tree for string S.

All nodes from V I ST S  have at least one bucket as it's child and bucket nodes don't have any children. 
Therefore V I T =V I ST S , V L T =B T , E I T =E I ST S  and E LT =E B

Now we can define lcplen function also for LC-bucket tree T

∀ v∈V I ST S : lcplen v=lcplenST  S v



1.1.3 Non-optimal findPairs query on LC-bucket tree

combineSubtree  p , v , visited , l
1 for all children c of v
2 if c≠visited
3 if c is bucket and LC c≠LC  p 
4 for all p2 from c
5 report pair  p2 , l 
6 if c is iternal node
7 combineSubtree  p , c , l 

findPairsNonOptimal  p ,k 
1 v := map  p
2 visited := NULL
3 while v≠ NULL and lcplen v≥k do
4 combineSubtree  p ,v , visited , lcplen v
5 visited := v
6 v := parent v

Theorem. 

Procedure findPairsNonOptimal  p1 , k  reports pair  p2 , l  if and only if  p1 , p2 , l  is maximal repeat in 
S such that l≥k

Proof:

Let T=LCBT  S, v1=map p1, v2=map p2 and w=LCAT v1 , v 2. Let 
u1=v1,u2= parent u1 , ... , u p= parent u p−1 be the sequence of nodes on path from v1 to root T  visited 
by procedure findPairsNonOptimal in the while loop on lines 3-6. u p is the last node with lcplenu p≥k. 
Note that once a subtree of a node u j is marked as visited in line 5 it is never visited again in any 
subsequent calls of combineSubtree on line 4. This is because next node to be marked is it's parent u j1, 
whose marking also excludes subtree of u j.

(if) :
Let  p1 , p2 , l  be a maximal repeat in S such that l≥k. Since  p1 , p2 , l  is right maximal, by Lemma 1 
lcplenT w=l≥kand therefore ∃ j∈{1..p}:w=u j. It means that procedure 
combineSubtree p , v , visited , l  is called at least once with parameters p:= p1, 
v :=w , visited :=u j−1 , l :=lcplenw (u0=NULL). Procedure combineSubree recursively visits all 
nodes in subtree of w that weren't already visited by previous call from findPairsNonOptimal and for all 

Figure 3: LC-bucket tree for string 'acaaacatat'



buckets B with LC B ≠LC  p1 reports pair  p , l for each p∈B. Since w is ancestor of v2, this node is 
also visited by  combineSubree and since w is lowest common ancestor of v1 and v2, v2 hasn't been visited 
in any previous call. Since  p1 , p2 , l  is left maximal LC p1≠LC  p 2 and therefore  p2 , l  is also 
reported.

(only if) :
Let  p2 , l  be a pair reported by a call findPairsNonOptimal  p1 , k . It had to be reported by a call of 
procedure  combineSubree on u j for some j in line 4 of findPairsNonOptimal. This means that l≥k. The 
pair  p2 , l  could only be reported if LC p 2≠LC  p1, because of condition in line 3 of combineSubree. 
u j is common ancestor of v1 and v2. We will show that it is also lowest common ancestor w. Suppose that 
w=ui for some i such that depth ui depth u j . This means that  i j and that  p2 , l  is reported by a 
call combineSubree on the node ui which is then marked as visited on line 5 before combineSubtree on u j 
is called. This means however that combineSubtree on u j couldn't report pair  p2 , l , which is 
contradiction. Since u j=w, it holds l=lcplenT w and since w=LCAT v 1 , v 2, by lemma 1 we have 
 p1 , p2 , l is right maximal repeat. Therefore  p1 , p2 , l  is maximal repeat in S with l≥k.

The problem is, that findPairsNonOptimal may take O(n) time, while only 1 pair is reported. Let's take 
string a n for example. LCBT an has n internal nodes that form a single path, each having one LC-
bucket. All of suffixes have left context a except the suffix 0 which has left context ¢. Let ui be node with 
depth ui =i. lcplen ui=i. LC-bucket of each ui contains exactly one suffix n-i. The deepest node u n−1 
contains also LC-bucket with suffix 0. If we call findPairsNonOptimal n−i ,1 for n−i≠0, we start 
while loop at lines 3-6 with node ui=mapn−i and end at node u1. First call of combineSubtree will 
traverse n−i1 buckets under ui. Subsequent calls of combineSubtree on nodes ui−1 , ui−2 , ... , u1 will 
traverse only one bucket on each. This means another i−1 buckets. Only one of these n buckets has left 
context other than a and therefore only one pair is reported.

The non-optimality of algorithm findPairsNonOptimal comes from following two problems:

1. combineSubtree  p , v , visited , l  visits all buckets under node v, not only buckets with left 
context other than LC p. This makes time consumed by combineSubtree not proportional to 
number of reported pairs.

2. while loop on lines 3-6 of findPairsNonOptimal visits all nodes v with lcplen v≥k on the path 
from map  p to root, disregarding that the node may not contain any bucket with left context 
other than LC  p that wasn't previously visited. This means, that we might visit too many nodes 
without proportional number of pairs being reported.

The R3 tree structure presented in the following text solves exactly these two problems.

1.1.4 Definition (Union trees)
If T =ST S  and ∣S∣=n. B T  is partition of N n, because v1 , a1≠v2 , a2⇒bv1 , a1≠b v2 , a2. We can 
therefore easily store B T  in O n space.

In later section we will need to access b  v , a  sets for nodes of suffix tree. B  T  may contain 
overlapping sets and therefore we need to apply a small trick to achieve O n space requirements. B  T  
is superset of B T . Elements of the set BuT =B T ∖ BT  will be called union nodes, because they 
can be constructed by unioning of buckets from B T : 
∀ b∈BuT :∃b1,b2, ... ,b k∈B T :b=b1∪b2∪...∪bk. Our next conceptual structure – union tree - 
captures the structure of union operators applied to LC-buckets to compose into union node.

Union tree for a node v of suffix tree T =ST S  and symbol a, is a tree UT v ,a =V , E , root such that
V ={b u ,a ∣v , u∈E I T ∗}, where E I T ∗ is transitive and reflexive closure of relation E I T .
E={M 1, M 2∈V×V∣M 1⊃M 2∧¬∃M 3∈V : M 1⊃M 3⊃M 2}
root=b v ,a 

Sets from B T  - leaves of union tree, will be represented as sets – we will explicitly store their contents. 
Sets from BuT  will be represented by pointers/edges to subsets from which they are composed. As 
every union node has at least two descendants ∣BuT ∣∣B T ∣ and therefore this representation needs 



O ∣BT ∣ space. Moreover, enumeration of all elements of b u , a ∈V can be done in O ∣b u , a ∣.

This representation of sets in union nodes also allows union operation in O 1 time which will prove 
useful later on. For a suffix tree T =ST S , UT T  will denote forest of union trees UT root T  , a . 
UT T  can be stored in O n space.( n=∣S∣) 

Property of union trees 1.

For each internal node v of ST S  and a∈¢, number of union nodes in UT v ,a  is smaller than number 
of buckets.

Proof : TODO

Property of union trees 2.

Let u, v be internal nodes of ST S  and a∈¢, such that v is descendant of u. Then UT v , a is subtree 
of UT u ,a .

Proof: TODO

1.1.5 Definition (R3 tree)
R3 Tree for a string S is a 6-tuple T =V , E , root ,UT , bp ,up such that
V =V I ST S
E=E I ST S 
root=root ST S 
UT=UT ST S 

bp:V ×¢UT is function returning b  v ,a  represented by a node  in union tree for each node and left 
context.

up: V ×¢V
up v ,a =u s.t. u , v∈E  ,∃b∈¢ ,b≠a:b u , b⊃b  v ,b 
∧∀w , w , v ∈E  ,∃b∈¢ ,b≠a:b u , b⊃b  v , b:depth wdepthu
if such u doesn't exist up v , a  is undefined

up is navigation function. It returns nearest ancestor u of v, such that Pos u contains at least one more 
suffix i, with LC i ≠a, than Pos v.

bpsize v is number of different symbols a, such that bp v , a ≠∅
upsize v  is number of different symbols a, such that up v , a is defined

TODO linearity of bpsize

1.1.6 Optimal findPairs query on R3 tree

combineUnionSubtree p ,u , visited , l 
1 if u = visited exit
2 for all children c of u
3 if c is bucket node
4 for all p2 from c
5 report pair  p2 , l 
6 if c is union node
7 combineUnionSubtree  p ,c , visited , l 

findPairs  p ,k 
1 v := map i
2 for each symbol a
3 visited [a ] := NULL



4 while v≠ NULL and lcplen v≥k do
5 for all a such that bp v , a  is defined
6 if a≠LC  p 
7 combineUnionSubtree  p , bp v , a , visited [a ] , lcplen v
8 visited [a ]:=bp v , a 
9 v := up v , LC  p 

Lemma. 

combineUnionSubtree  p ,bp v , a , visited , l runs in time O  z where z is number of reported pairs.

Proof:
Let nb be number of buckets and nu number of union trees inUT v , a . From property of union trees 1, we 
know that nunb. If we prune node visited and it's subtree we still have nu≤nb. Procedure 
combineUnionSubtree traverses UT v ,a   (except the visited node and it's subtree) and reports at least 
one pair for each bucket it encounters. Therefore nb≤z and combineUnionSubtree runs in time O  z . 

Theorem. 

Procedure findPairs  p1 , k  reports pair  p2 , l  if and only if  p1 , p2 , l is maximal repeat in S  such that 
l≥k

Proof:

Let T =R3T S , v1=mapT  p1, v2=mapT  p2 and w=LCAT v1 , v2. Let 
w1=v1, w2= parent w1 , ... ,w s= parent w s−1 be the sequence of nodes on path from v1 to root T  such 
that lcplen w i≥k for i∈{1..s} and lcplen  parent ws k or w s=root T . This sequence may be 
empty if lcplen v 1k. Let u1=v1,u2=upT u1, LC  p1 , ... , u p=upT u p−1 , LC  p1 be the subsequence 
of w1 , w2 , ... ,w s visited by procedure findPairs in the while loop on lines 4-9. Note that once subtree 
UT u j , a is marked as visited in line 8 it is never processed again in any subsequent calls of 
combineUnionSubtree on line 7. This is because next node u j1 is ancestor of u j and by property 2 
UT u j , a is subtree of UT u j1 , a , whose marking also excludes UT u j , a.

(if) :
Let  p1 , p2 , l  be a maximal repeat in S such that l≥k. Since  p1 , p2 , l  is right maximal, by Lemma 
XXXTODO lcplenT w=l≥k and therefore s≥1 and ∃ j∈{1..s}:w=w j. We need to show that also 
∃ j∈{1..p}:w=u j. If w=v1 this holds for j=1. Let's consider the case w≠v1. Let i be the greatest index 
such that w is ancestor of ui. It has to hold that either w=ui1 or ui1 is ancestor of w. 
ui1=upT u i , LC  p1 therefore 

(1) ui1 , ui ∈E T  ,∃b∈¢ , b≠LC  p1:b ui1 , b⊃b ui , b 
and

(2) ∀ z  z , ui∈E T  ,∃b∈¢ , b≠LC  p1:b u ,b ⊃b v ,b  : depth  zdepth ui1

We also have w ,ui∈E T   and b w , LC  p2⊃b ui , LC p 2, because w=LCAT v1, v2 and 
therefore w is lowest ancestor of v1 in which p2 occurs. LC p 2≠LC  p1 because  p1 , p2 , l  is left 
maximal repeat.

Let ui1 be ancestor of w. Then depth ui1depth w. This contradicts (2) and therefore w=ui1.

When node w is visited by while loop combineUnionSubtree w , bp w , LC  p2 , visited [ LC p 2] ,l  is 
called. bp w ,LC  p2≠visited [LC p 2] because w=LCAT v 1, v2. p2 occurs in a bucket of 
UT w , LC  p2 and therefore pair  p2 , l  is reported. 

(only if) :
Let  p2 , l  be a pair reported by a call findPairs  p1 , k . It had to be reported by a call of procedure 



combineUnionSubree on u j for some j in line 7 of findPairs. From condition of while loop on line 4 we 
have l≥k. The pair  p2 , l  could only be reported if LC p 2≠LC  p1, because of condition in line 6 of 
findPairs. u j is common ancestor of v1 and v2. We will show that it is also lowest common ancestor w. 

We will prove u j=w by contradiction. Let u j=w i. Let U={u1,u 2,... , u j−1} and 
W ={w1 ,w2 , ... , wi−1}∖U. If u j≠w, w∈U∪W. By similar argument as in  (if) part of the proof, it can be 
shown that w∉W. Now let's suppose that w∈U ∃m1≤m j :u m=w. In such case  p2 , l  is reported 
by a call combineUnionSubree on the node bp um , LC  p 2 which is then marked as visited on line 8 
before combineUnionSubtree on u j is called. This means however that combineUnionSubtree on 
bp u j ,LC  p2 couldn't report pair  p2 , l , which is contradiction.

Since u j=w, it holds l=lcplenT w and since w=LCAT v 1 , v 2, by lemma 1 we have  p1 , p2 , l  is right 
maximal repeat. Therefore  p1 , p2 , l is maximal repeat in S with l≥k.

Theorem.

findPairs runs in time O  z  where z is number of reported pairs.

Proof:

Let u1=mapT  p1 , u 2=upT u1, LC  p1 , ... , u p=upT u p−1 , LC  p1, be all nodes visited in while loop on 
lines 4-9.

Let's consider set C of all calls to combineUnionSubtree from line 7 in findPairs. Let Ca be subset of calls 
that report at least one pair and C b subset of calls that don't report any pair because they are called with 
visited node in argument. By theorem XXTODO total time t a spent in all Ca calls is O z . Total time t b 
spent by Cb calls is at most O p−1∣∣
(if a call occurs in u1, it is C a call)

From node ui, we continue to node ui1=upT ui , LC  p1 if it exists. We know that ∃b∈¢ 
b≠LC  p1:b ui1 ,b⊃b ui ,b. This means that bp ui1 ,b is parent of bp ui ,b in UT ui1 , b 
and can't have been visited before and UT ui1 ,b  has at least one new bucket that will be visited by 
combineUnionSubtree.

Thus for each node {u2 , ... , u p} at least one Ca call is made and  p−1≤∣Ca∣≤z. t b is therefore O z too. 
Initialisation in lines 1-3 takes constant time and time spent in each node for other purpose than for 
combineUnionSubtree calls is also constant. Total time taken by findPairs is therefore O z .

Figure 2: R3 tree for 'acaaacatat'


	R3 tree
	1.1.1Definition (LC-buckets)
	1.1.2Definition (LC-bucket tree)
	1.1.3Non-optimal findPairs query on LC-bucket tree
	1.1.4Definition (Union trees)
	1.1.5Definition (R3 tree)
	1.1.6Optimal findPairs query on R3 tree


