Definitions and notation

Let 2 be finite ordered alphabet. We will use symbols a, b, ... for elements of the alphabet. We suppose
|X] is constant. X* is the set of all strings over 2. Let <, denote lexicographic ordering on 3*. We will
use symbols S, S, S, x,y,z, w,u... for strings. |S| denotes length of string S. We will also use symbol n
to denote length of a string. We write S|i], where 0<i <|S|, to refer to i-th character of S. We define
S[—1]=¢ and S[|S|]=8, where ¢, $& 3 are special symbols. S|i..j |, where 0<i < j<|S| refers to
substring of S starting at position 7 and ending at position j. For 0<i <|S|, substring S[i..|S|—1] is called

suffix and substring S [0..7] is called prefix. The fact that x is prefix of y, is denoted xCy and the fact that
x is suffix of y is denoted y3x. N, ={0, 1,..., n— 1} We will represent suffix S[i..|S|—1] by integer i, that

represents it's starting position in S. Sometimes we will write suffixs(i)=S[i..|S|] We will write LC (i)
(left context of suffix i), to denote S[i—1].

p P,
| |

aaabaaababbaaabbbaababaabaabaaabba

[[

Figure 1: Maximal repeat

A triple (p,, p,, I)GNE” is called repeat if 0< p, +/<|S|, 0< p,+/<|S|, p,# p2 and
S|p,..pi+1=1]=S[p,.. p2+1-1]. Repeat (p,, p,.1) is called left maximal if S[p,—1]# S[p,—1] and
right maximal if S [p,+1]#S[p,+1]. A repeat is called maximal if it's left and right maximal.

On figure 1, we can see example of maximal repeat (1, 25, 7). Our queries for maximal repeats in string S
will have form of Answer := findPairs(p,,k ,S), where findPairs is a function that returns the set of all
pairs (p,, 1) such that (p,, p,, 1) is maximal repeat in S with /> k. For example the query findPairs(0, 4,
S) for string from figure 1 would return the set { (4, 5), (11,4), (28,4) }.

Tree T'is a triple (V, E, root) where V is set of nodes, root €V is the root node, ESV XV is set of edges.
For all nodes v €V \{root| there is exactly one node parent (v)€ V such that (parent (v), v €E. For a
node vV we define Children(v)=|ul(v,u)€E), Desc(v)={u|(v JU)EE"], where E* is transitive
closure of E. Depth of a node is defined as follows: depth(root)=0, depth(v)=depth(parent (v))+1 for
veV \[root}. We divide set of nodes V into leaves ¥, =|v|Children(v)= @/, and internal nodes
V,=V\V, We divide set of nodes E into internal edges £,=EN(V XV ,) and leaf edges
E,=En(VXV)).

For a tree T, we use following symbols. ¥ (T') is set of nodes, E (T') is set of edges, root (T) is the root of
the tree, V', (T) is the set of internal nodes, ¥, (T') is set of leaves, E,(T) is the set of internal edges,
E,(T) is the set of leaf edges.

TODO definition of lowest common ancestor

Suffix tree for a string S of length # is a 5-tuple ST (S)=(V , E, root ,label , path)

(V,E,root)isatree. Let V,,V,, E,, E denote the same as in the definition of tree.

label : E— X" is an edge-labeling function , that labels each edge of the tree T by some non-empty string.

path:V —X" is a map from nodes to strings. For a node v €V and the path 7001 =V, V,, ...V, =V we
define path(v)=label(v,,v,)label (v,,v,)..label (v,_,,v,), path(root)=c¢.

Leaves of the suffix tree represent positions of suffixes of S. Internal nodes represent sets of positions.
For an internal node vE/V,.

Pos(v)=Children(v)nV
Pos” (v)=Desc(v)NV,

Pos™ (v)=Pos " (v)\Pos(v)

ForanodeveV

Pos” (v)=Pos" (v)forveV,

Pos™ (v)={v} forvel,.

For an internal node v €V ;, we define leplen (v)=|path(v)|.

Suffix tree satisfies following additional conditions

Vi=N,.

YieV,: path(i)=S[i..n]

Y veV,:|Chidren(v)[=2

Y veV,:Yi€Pos" (v): path(v)c path(i)

VveV, VYa,beX x,yeX":
(v,u)€EEA(v,w)EE ANl (v,u)=ax Al (v,w)=by|=a#b

A e

In other words, (1) the leaves of T represent positions of all suffixes of S, (2) concatenation of labels on
the path from root to a leaf spells exactly the suffix represented by the leaf, (3) each internal node is a
branching node — it has at least 2 children, (4) the internal nodes represent common prefix of their
descendants and (5) all labels of edges outgoing from a node must begin with distinct characters. Note
that suffix tree definition uses suffixes that are extended to the right endmarker .

We deal with suffix trees, because they have an interresting property from the point of view of maximal
repeats. Each internal node v of a suffix tree represents the longest common prefix path(v) of it's
descendants. Moving to a child of the vertex v means extending the prefix. For suffixes under two distinct
children (that are either leaf or internal nodes) the prefix path(v) is not right-extensible.

Property.

Let v be an internal node of suffix tree T for S, I=Icplen(v), ¢, ¢,€ Children(v), ¢,# ¢, p,€ Pos" (c,),
p,€ Pos” (c,).Then
(py, p,. 1) is right maximal repeat in S.

Lemma.

Let TZST(S) and p,, p,, P17 P», be positions of suffixes of S. Let vi=map(p,), v,=map;(p,).
W:LCAT(VI,VZ). Then

(p1, P, 1) is right maximal repeat in S if and only if / =lcplen,(w)

Proof : It holds that I ¢,, ¢,E Children(w), p,€ Pos” (¢,), p,€Pos"(c,). Also ¢,#c¢, holds, because

w :LCAT(V1 , vz). Property XXX, (p. , Py, leplen (W)) is right maximal repeat in S. There can't be right
maximal repeat (p1, P2, 1) for I other than Icplen T(w), because it would contradict with properties of
right maximal repeat.

Let S be a string of length n, let's have suffix tree 7=ST(S). We define function map : N,, =V, such
that ViEN ., - i€ Pos(map (i)) i.e. map returns node v such that i is child of v. Function map can be
realised by table that can be easily precomputed in O(n) time by one traversal of T. Value map (i) can be
therefore accessed in O(1) time.

For T=ST(S), V(T), E(T), root (T), V(T), V,(T) E,T), E,(T) have the same meaning as in the
definition of tree. pathy, label ;, Icplen,, Pos;, Pos, , map; denote path, label, Icplen, Pos, Pos™ and map
functions for 7.

It is known that suffix tree can be built in O(n) time and space using algorithms of ... TODO

Suffix array is a permutation sas: N5, = N g, such that

Vi, j:0<i<j<|S|:
S”ﬁixs<Sas(i))<Lsuﬁixs<Sas<j))- |

For 0<i < j<|S|, and and suffix array sas, we define sa|i..j|={sag(i),sag(i+1),..,sa()]

Let's define function Icplen, : 3" X 3" — N returning length of longest common prefix of two strings,
VS.S, .'lcplenz(Sl’Sz)Zmax{lZ 1 |S1 [0..1-1]=8,[0..1—1]} (let's suppose that that max for empty set is
0).

Lep-table is a function lcpy: (N | S‘+1—{0})—> N 5| defined as follows
Vi:1<i<|S|:
leps(i)=lcplen, (suffix s (sas(i—1)), suffixs(sag(i))). B

Lcp-interval is a triple (/, i, j) that satisfies all following conditions

lepinterval (1,1, j) &

1. 0<i<j<|S|

2. lepg(i)<i

3. Vki+l1<k<j:lepy(k)=I
4, Ak:i+1<k<j:lepg(k)=1
5. leps(j+1)<l

For an Iepinterval (1,1, j), we'll write prefixs(l,i, j) to denote the longest common prefix of all suffixes
suffixg(sag(i)), suffixg(sag(i+1)),..., suffixg(sag(j)). Sometimes, instead of triples, we'll use symbols 1,
J, .. for Icp-intervals. For interval I = (1,i,j) we define Licp = [, Lleft = i, Lright = j. B

Lcp-inerval (m, p, g) is said to be embedded in an lcp-interval (7, i, j) if it is subitnerval of (7, i, j).

embedded ¢((m, p.q),(1,i,) e
1. lIcpintervaly(l,i, j)
2. lcpintervalg(m, p,q)
3. isp<q=j
4. m>|"

(1, i, j) is then called the interval enclosing (m, p, ¢). We call (m, p, q) a child interval of (/, 7, j) if it is
embedded in (7, i, j) and there is no interval embedded in (7, i, j) that also encloses (m, p, q):

child s\(m. p.q).(1.i, j)|=
1. embedded((m,p,q),(1,i,)))
2. -3(r,s,t):embedded ((m, p,q),(r,s,t)|Nembedded ¢((r,s,t).(1,i,}))

The predicate child s, can be read also as a relation over lep-intervals. This parent-child relation defines
Icp-interval tree. Let's define set of descendants for given lcp-interval I:

1 Note that we cannot have both i=p and g=j because m>/

0o hOWN

10

Figure 2: Suffix tree for string 'acaaacatat’

TODO isomorphism of suffix tree and lcp-interval tree

	Definitions and notation

