
Definitions and notation
Let Σ be finite ordered alphabet. We will use symbols a, b, ... for elements of the alphabet. We suppose 
∣∣ is constant. ∗ is the set of all strings over Σ. Let L denote lexicographic ordering on ∗. We will 
use symbols S , S 1, S 2, x , y , z , w ,u ... for strings. ∣S∣ denotes length of string S. We will also use symbol n 
to denote length of a string. We write S [i ], where 0i∣S∣, to refer to i-th character of S. We define 
S [−1]=¢ and S [∣S∣]=$, where ¢ , $∉ are special symbols. S [i..j ], where 0i j∣S∣ refers to 
substring of S starting at position i and ending at position j. For 0i∣S∣, substring S [i..∣S∣−1] is called 
suffix and substring S [0 .. i ] is called prefix. The fact that x is prefix of y, is denoted xy and the fact that 
x is suffix of y is denoted yx. N n={0, 1,... , n−1}. We will represent suffix S [i..∣S∣−1] by integer i, that 
represents it's starting position in S. Sometimes we will write suffixSi =S [i..∣S∣] We will write LC i  
(left context of suffix i),  to denote S [i−1].

A triple  p1 , p2 , l ∈N ∣S ∣
3  is called repeat if 0≤ p1l≤∣S∣, 0≤ p 2l≤∣S∣, p1≠ p2 and 

S [ p1 .. p1l−1]=S [ p2 .. p2l−1 ]. Repeat  p1 , p2 , l is called left maximal if S [ p1−1 ]≠ S [ p2−1] and 
right maximal if S [ p1l ]≠S [ p2l ]. A repeat is called maximal if it's left and right maximal.

On figure 1, we can see example of maximal repeat (1, 25, 7). Our queries for maximal repeats in string S 
will have form of Answer := findPairs  p1 , k , S , where findPairs is a function that returns the set of all 
pairs  p2 , l  such that  p1 , p2 , l  is maximal repeat in S with l≥k. For example the query findPairs(0, 4,  
S) for string from figure 1 would return the set { (4, 5), (11,4), (28,4) }. 

Tree T is a triple V , E , root  where V is set of nodes, root∈V is the root node, E⊆V×V is set of edges. 
For all nodes v∈V ∖{root } there is exactly one node parent v∈V such that  parent v , v  ∈E. For a 
node v∈V we define Children v={u∣v , u ∈E },  Desc v ={u∣v ,u∈E }, where E  is transitive 
closure of E. Depth of a node is defined as follows: depth  root=0, depth  v=depth  parent v1 for 
v∈V ∖{root }. We divide set of nodes V into leaves V L={v∣Children v=∅}, and internal nodes 
V I=V ∖V L. We divide set of nodes E into  internal edges E I=E∩V×V I  and leaf edges 
E L=E∩V×V L. 

For a tree T, we use following symbols. V T  is set of nodes, E T  is set of edges, root T  is the root of 
the tree, V I T  is  the set of internal nodes, V L T  is set of leaves, E I T  is the set of internal edges, 
E LT  is the set of leaf edges.

TODO definition of lowest common ancestor

Suffix tree for a string S of length n is a 5-tuple ST S =V ,E , root ,label , path 

V , E , root  is a tree. Let V I ,V L , E I , E L denote the same as in the definition of tree.

label : E  is an edge-labeling function , that labels each edge of the tree T by some non-empty string. 

path:V ∗ is a map from nodes to strings. For a node v∈V and the path root=v0 , v1 ,.. , v k=v we 
define path v=label  v0 , v1label v1 , v2.. label vk−1 , vk , path root =.

Leaves of the suffix tree represent positions of suffixes of S. Internal nodes represent sets of positions.

For an internal node v∈V I.
Pos v=Children v∩V L

Pos v=Desc v ∩V L

Figure 1: Maximal repeat



Pos2 v=Pos  v ∖Posv 
For a node v∈V
Pos∗v =Pos v  for v∈V I

Pos∗v ={v} for v∈V L.
For an internal node v∈V I, we define lcplen v=∣path v∣. 

Suffix tree satisfies following additional conditions

1. V L=N n1

2. ∀ i∈V L : path i =S [ i ..n ]
3. ∀ v∈V I :∣Chidren  v∣≥2
4. ∀ v∈V I :∀ i∈Pos v: pathv pathi 
5. ∀ v∈V I ,∀a , b∈ , x , y∈∗ :

v , u ∈E∧v , w∈E∧l v , u =ax∧l v , w =by ⇒a≠b

In other words, (1) the leaves of T represent positions of all suffixes of S, (2) concatenation of labels on 
the path from root to a leaf spells exactly the suffix represented by the leaf, (3) each internal node is a 
branching node – it has at least 2 children, (4) the internal nodes represent common prefix of their 
descendants and (5) all labels of edges outgoing from a node must begin with distinct characters. Note 
that suffix tree definition uses suffixes that are extended to the right endmarker $. 

We deal with suffix trees, because they have an interresting property from the point of view of maximal 
repeats. Each internal node v of a suffix tree represents the longest common prefix path(v) of it's 
descendants. Moving to a child of the vertex v means extending the prefix. For suffixes under two distinct 
children (that are either leaf or internal nodes) the prefix path(v) is not right-extensible.

Property.

Let v be an internal node of suffix tree T for S, l=lcplen(v), c1 , c2∈Children v , c1≠c2, p1∈Pos∗ c1, 
p2∈Pos∗ c 2.Then

  p1 , p2 , l is right maximal repeat in S.

Lemma. 

Let T=ST S  and p1 , p2 , p1≠ p 2, be positions of suffixes of S. Let  v1=mapT  p1, v2=mapT  p2.
w=LCAT v1 , v2. Then

 p1 , p2 , l  is right maximal repeat in S if and only if l=lcplenT w

Proof : It holds that ∃c1 , c 2∈Children w, p1∈Pos∗ c1, p2∈Pos∗c2. Also c1≠c2 holds, because 
w=LCAT v1 , v2. Property XXX,  p1 , p2 , lcplenT w is right maximal repeat in S. There can't be right 
maximal repeat  p1 , p2 , l for l other than lcplenT w, because it would contradict with properties of 
right maximal repeat.

Let S be a string of length n, let's have suffix tree T=ST S . We define function map : N n1V I such 
that ∀ i∈N n1: i∈Posmap i  i.e. map returns node v such that i is child of v. Function map can be 
realised by table that can be easily precomputed in O  n time by one traversal of T. Value map i can be 
therefore accessed in O 1 time.

For T=ST S , V T , E T , root T , V I T , V L T , E I T , E LT  have the same meaning as in the 
definition of tree. pathT, label T, lcplenT, PosT, PosT

 , mapT denote path, label, lcplen, Pos, Pos  and map 
functions for T.

It is known that suffix tree can be built in O n time and space using algorithms of ... TODO

Suffix array is a permutation sa S :N ∣S∣1 N ∣S∣1 such that 



∀ i , j : 0≤i j≤∣S∣:
suffixS saS i L suffixS  saS  j. 

For 0≤i j≤∣S∣, and and suffix array sa S, we define sa S[ i..j ]={saS i , saS i1 , .. , sa j}
Let's define function lcplen2 :∗×∗ N returning length of longest common prefix of two strings, 
∀ S 1, S 2 :lcplen 2S 1, S 2=max {l≥1∣S1[0.. l−1 ]=S 2[0.. l−1 ]} (let's suppose that that max for empty set is 
0).

Lcp-table is a function lcpS : N ∣S∣1−{0} N ∣S∣ defined as follows

∀ i :1≤i≤∣S∣:
lcpS i=lcplen2suffixS  saS i−1  , suffixS  saSi . 

Lcp-interval is a triple (l, i, j) that satisfies all following conditions

lcpinterval S l , i , j⇔
1. 0≤i j∣S∣
2. lcpS il
3. ∀ k :i1≤k≤ j : lcpS k ≥l
4. ∃k : i1≤k≤ j : lcpS k =l
5. lcpS  j1l

For an lcpinterval S l , i , j, we'll write prefixS l ,i , j  to denote the longest common prefix of all suffixes 
suffixS saS i , suffixS sa S i1 ,... , suffixS sa S  j . Sometimes, instead of triples, we'll use symbols I, 
J, .. for lcp-intervals. For interval I = (l,i,j) we define I.lcp = l, I.left = i, I.right = j. 

Lcp-inerval (m, p, q) is said to be embedded in an lcp-interval (l, i, j) if it is subitnerval of (l, i, j):

embedded S m , p , q , l ,i , j ⇔
1. lcpinterval S l , i , j
2. lcpinterval S m , p ,q 
3. i≤ pq≤ j
4. ml 1

(l, i, j) is then called the interval enclosing (m, p, q). We call (m, p, q) a child interval of (l, i, j) if it is 
embedded in (l, i, j) and there is no interval embedded in (l, i, j) that also encloses (m, p, q):

child S m , p ,q  ,l , i , j ⇔
1. embedded S m , p , q , l ,i , j 
2. ¬∃r , s , t  : embedded S m , p ,q  ,r , s ,t ∧embedded S r , s ,t  ,l ,i , j 

The predicate child S, can be read also as a relation over lcp-intervals. This parent-child relation defines 
lcp-interval tree. Let's define set of descendants for given lcp-interval I:

1 Note that we cannot have both i=p and q=j because m>l



TODO isomorphism of suffix tree and lcp-interval tree

Figure 2: Suffix tree for string 'acaaacatat'
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