
Data structure for representing
maximal repeats in strings

Master thesis

Michal Linhard

Thesis advisor: Mgr. Tibor Hegedüs

Comenius University
Faculty of Mathematics, Physics and Informatics

Department of Computer Science

Bratislava 2007

Abstract

In this diploma thesis we present data structure for representation of maximal repeats in
strings – R3 tree, based on well known data structure - suffix tree. It requires O n space
and it can be constructed in O ∣∣n  time and O n space for string of length n over
alphabet . We formalize repeat in string S as triple  p1 , p2 , l, where p1, p2 are two
distinct positions in S and l is the length of the repeat. We formulate query for maximal
repeats in S in the form of the function findPairs  p1 , k , S  that returns all pairs  p2 , l  such
that  p1 , p2 , l  is maximal repeat with l≥k. R3 tree allows computation of findPairs queries
in optimal time O  z , where z is the number of found pairs. We also describe design and
functionality of R3lib – library written in C, for finding maximal repeats in arbitrary binary
data, that works with proposed structure.

Table of Contents
1Introduction..4
2Data structures... 5

2.1Basic notions... 5
2.2Preliminary data structures..5

2.2.1Suffix tree... 5
2.2.2Enhanced suffix array... 7
2.2.3LC-bucket tree.. 8

1 Introduction
The most known motivation for maximal repeat algorithms comes from bioinformatics. The computation
of maximal repeats in strings plays an important role in the analysis of genomic sequences. In general this
area stimulates majority of research in area of string algorithms today. There are several other motivations
for finding duplication in any data. Repeat discovery may help avoiding redundancy and can be useful in
text analysis. For example, it is a good practice to avoid duplication in program source code because of
the danger of bug fixes being applied to one copy but not all the others.

There are algorithms and software tools for finding all maximal repeats in a string. Optimal algorithm for
finding all maximal repeats was first described in Baker93. This algorithm is based on suffix trees and
finds all maximal repeats in O n.log∣∣z, where n is length of the string, ∣∣ is size of the alphabet
and z is number of maximal repeats (output size). A space efficient version of this algorithm using suffix
arrays is described in AbuOhl04. There are tools that can efficiently find maximal repeats in genome
sequences, for example Vmatch1 (new version of REPuter) and also recent version of MUMmer2.

Maximal number of all maximal repeats in a string S of size n is O n2. Some applications may occur,
where we don't want to see all maximal repeats at once, but interactively analyze data or text and see only
maximal repeats starting at position in currently viewed segment. Our approach is to build a data structure
representing all maximal repeats in the data, that could answer such queries quickly. It turns out, that such
structure requires only linear space and also can be constructed in linear time and space.

1 http://www.vmatch.de/
2 http://mummer.sourceforge.net/

4

2 Definitions and notation
basic notions

definition of tree

definition of suffix tree

definition of suffix array

definition of lcp-table

definition of lcp-interval tree

isomorphism of suffix tree and lcp-interval tree

3 R3 tree
definition of lc-buckets

definition of lc-bucket tree

findPairsNonOptimal query on lc-bucket tree

proof of correctness of findPairsNonOptimal

problems of findPairsNonOptimal

definition of union tree

linearity of union tree

definition of R3 tree

linearity of bpsize pointers

optimal findPairs query on R3 tree

proof of correctness of findPairs

proof of optimality of findPairs

4 R3Lib implementation
implementation of union trees

memory structures of R3 tree

space requirements of R3 tree

algorithm for construction of R3 tree

up table implementation

optimal findPairs query implementation

5

	1Introduction
	2Definitions and notation
	3R3 tree
	4R3Lib implementation

